Learning complementary representations via attention-based ensemble learning for cough-based COVID-19 recognition
- verfasst von
- Zhao Ren, Yi Chang, Wolfgang Nejdl, Björn W. Schuller
- Abstract
Coughs sounds have shown promising as-potential marker for distinguishing COVID individuals from non-COVID ones. In this paper, we propose an attention-based ensemble learning approach to learn complementary representations from cough samples. Unlike most traditional schemes such as mere maxing or averaging, the proposed approach fairly considers the contribution of the representation generated by each single model. The attention mechanism is further investigated at the feature level and the decision level. Evaluated on the Track-1 test set of the DiCOVA challenge 2021, the experimental results demonstrate that the proposed feature-level attention-based ensemble learning achieves the best performance (Area Under Curve, AUC: 77.96%), resulting in an 8.05% improvement over the challenge baseline.
- Organisationseinheit(en)
-
Forschungszentrum L3S
- Externe Organisation(en)
-
Universität Augsburg
Imperial College London
- Typ
- Artikel
- Journal
- Acta Acustica
- Band
- 6
- Publikationsdatum
- 25.07.2022
- Publikationsstatus
- Veröffentlicht
- Peer-reviewed
- Ja
- ASJC Scopus Sachgebiete
- Akustik und Ultraschall, Angewandte Informatik, Sprechen und Hören, Elektrotechnik und Elektronik
- Elektronische Version(en)
-
https://doi.org/10.1051/aacus/2022029 (Zugang:
Offen)
https://doi.org/10.15488/12807 (Zugang: Offen)